#667 MC34063 Buck Converter
Design and test a basic 9v to 5v step-down regulator circuit using the MC34063A.
Notes
The MC34063A is a Buck / Boost / Inverting Regulator with a minimum number of external components.
- Operation from 3.0 V to 40 V Input
- Output Switch Current to 1.5 A
- Frequency Operation to 100 kHz
- Precision 2% Reference
Circuit Design Calculations
The MC34063A datasheet provides the design guidelines and calculations for step-down converter.
OnSemi also provide a MC34063A Design Worksheet to assist.
Circuit Design Calculations for 9V to 5V Converter
I’m going to work this through from scratch.
Some givens and assumptions
Vf = 0.6V
; 1N5819 forward voltageVsat = 1V
; 1N5819 saturation voltageVripple = 100mV
; chosen peak ripple voltage- Design for 1A and 30% inductor ripple (typical inductor use 20-40% of the average output current)
Il(avg) = 1A
Iripple = 1A * 30% = 0.30A
Ipk = Il(avg) + Iripple/2 = 1 + .30/2 = 1.15A
- 40Khz switching frequency
Calculate Ton/Toff
= 1.87
Ton/Toff
= (Vout + Vf) / (Vin - Vsat - Vout)
= (5 + 0.60) / (9 - 1 - 5)
= 1.87
Calculate Ton + Toff
= 25µs
Ton + Toff
= 1 / f
= 1 / 40kHz
= 25µs
Calculate Toff
= 8.71µs
Toff
= (Ton + Toff)/(Ton/Toff + 1)
= 25µs/(1.87 + 1)
= 8.71µs
Calculate Ton
= 16.29 μs
Ton
= (Ton + Toff) – Toff
= 25µs – 8.71µs
= 16.29 μs
Calculate timing Capacitor Ct to produce the desired frequency. Result: Ct = 652pf
Ct
= 4.0 * 10^-5 * Ton
= 4.0 * 10^-5 * 16.29μs
= 652pf
Calculate the minimum inductor value Lmin
= 42.5μH
Lmin
= (Vin - Vsat - Vout)/Ipk x Ton
= (9V - 1V - 5V)/1.15A * 16.29µs
= 42.5μH
Calculate Rsc
= 0.260Ω
Rsc
= 0.3/Ipk
= 0.3/1.15
= 0.260Ω
Calculate Cout
. Let’s calculate the output capacitor values, we can choose a ripple value of 100mV (peak to peak) from the boost output.
Result: Cout = 35.94μF
Cout
= Ipk (Ton + Toff)/(8 * Vripple)
= 1.15A * 25µs/(8 * 100mV)
= 35.94μF
Calculate feedback resistors R1 and R2, given R1 = 2kΩ
and Vout = 1.25 (1 + R2/R1)
.
Result: R2 = 6kΩ
R2
= R1 * (Vout/1.25 - 1)
= 2kΩ * (5/1.25 - 1)
= 6kΩ
Finally, selecting available components close to the theoretical:
Ref | Design Value (Ideal) | Selected |
---|---|---|
Co | 35.94μF | 47μF |
L1 | 42.5μH | 47μH |
R1 | 2kΩ | 2kΩ |
R2 | 6kΩ | 6.8kΩ |
Vout | 5V | 5.5V |
Circuit Construction
Testing
The output voltage I’m seeing is 5.6V, close to the expected 5.5V with these components:
The ripple (captured AC-coupled on the following scope trace) appears to be running at around
- 200mV peak-peak
- 600µs period i.e. 1.7kHz
That’s quite a bit off from the design parameters; probably worth re-testing with a protoboard/PCB version of the circuit and perhaps a load closer to the design current.